5,768 research outputs found

    Joel Johnson Associate Professor of Geology travels to Sweden

    Get PDF
    During the summer of 2013, I served as a research mentor and co-mentor for three undergraduate students who took part in a NSF funded International REU (Research Experience for Undergraduates) program coordinated and led by UNH Department of Earth Sciences Associate Professor, Ruth Varner. The multi-year REU program, titled REU Site: The influence of climate change on biogeochemical processes in northern ecosystems: An international perspective in Earth System Science, is focused on providing student research experiences in Earth System Science (ESS), with special emphasis on investigating the impacts of climate change on biogeochemical processes in northern upland and wetland ecosystems

    New polynomial and multidimensional extensions of classical partition results

    Get PDF
    In the 1970s Deuber introduced the notion of (m,p,c)(m,p,c)-sets in N\mathbb{N} and showed that these sets are partition regular and contain all linear partition regular configurations in N\mathbb{N}. In this paper we obtain enhancements and extensions of classical results on (m,p,c)(m,p,c)-sets in two directions. First, we show, with the help of ultrafilter techniques, that Deuber's results extend to polynomial configurations in abelian groups. In particular, we obtain new partition regular polynomial configurations in Zd\mathbb{Z}^d. Second, we give two proofs of a generalization of Deuber's results to general commutative semigroups. We also obtain a polynomial version of the central sets theorem of Furstenberg, extend the theory of (m,p,c)(m,p,c)-systems of Deuber, Hindman and Lefmann and generalize a classical theorem of Rado regarding partition regularity of linear systems of equations over N\mathbb{N} to commutative semigroups.Comment: Some typos, including a terminology confusion involving the words `clique' and `shape', were fixe

    Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Get PDF
    New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600 s, the most likely age for the third event of ?? 1500-1600, and a fourth event ?? 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ?? 2000 years

    Microscopic Motion of Particles Flowing through a Porous Medium

    Full text link
    We use Stokesian Dynamics simulations to study the microscopic motion of particles suspended in fluids passing through porous media. We construct model porous media with fixed spherical particles, and allow mobile ones to move through this fixed bed under the action of an ambient velocity field. We first consider the pore scale motion of individual suspended particles at pore junctions. The relative particle flux into different possible directions exiting from a single pore, for two and three dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next we consider the waiting time distribution for particles which are delayed in a junction, due to a stagnation point caused by a flow bifurcation. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. We also find that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. We study the stability of geometrically trapped particles. For simple model traps, we find that particles passing nearby can ``relaunch'' the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.Comment: 16 pages, 19 figure

    Final Causality in the Thought of Thomas Aquinas

    Get PDF
    Throughout his corpus, Thomas Aquinas develops an account of final causality that is both philosophically nuanced and interesting. The aim of my dissertation is to provide a systematic reconstruction of this account of final causality, one that clarifies its motivation and appeal. The body of my dissertation consists of four chapters. In Chapter 1, I examine the metaphysical underpinnings of Aquinas’s account of final causality by focusing on how Aquinas understands the causality of the final cause. I argue that Aquinas holds that an end is a cause because it is the determinate effect toward which an agent’s action is directed. I proceed by first presenting the general framework of causality within which Aquinas understands final causality. I then consider how Aquinas justifies the reality of each of the four kinds of cause, placing special emphasis on the final cause. In Chapter 2, I consider final causality from the perspective of goodness and explore the reasons why Aquinas thinks that the end of an action is always good. For even if one was convinced that the end of an action is indeed a cause, one might still resist attributing any normative or evaluative properties to the end, much less a positively-valenced normative property like goodness. In this chapter, I show how, given Aquinas’s metaphysics of powers and his characterization of goodness as that which all desire, it follows that every action is for the sake of some good. In Chapter 3, I consider Aquinas’s account of the relation between final causality and cognition. In many passages throughout his corpus—most famously in the fifth of his Five Ways—Aquinas advances the claim that cognition plays an essential role in final causality. In this chapter, I explore Aquinas’s account of the relation between final causality and cognition by reconstructing his Fifth Way and investigating the metaphysical foundations on which it rests. While the first three chapters of my dissertation focus on Aquinas’s account of final causality from the perspective of the ends of individual agents, in Chapter 4 I broaden my focus to consider the way in which the account of final causality developed in these earlier chapters shapes Aquinas’s philosophical cosmology. I argue that, on Aquinas’s view, when an individual agent acts for an end, it is plays a role in a larger system, e.g. a polis, an ecosystem, or the universe itself

    The Distributional Effects of Recent Changes to Maine’s Tax System

    Get PDF
    Both classical economic theory and recent empirical research support the notion that taxes should be progressive: that the wealthiest citizens should pay a larger share of their income in taxes than the middle class, and the middle class should pay a larger share of their income in taxes than the poor. Like every other state in the U.S., Maine’s state and local tax system is not progressive, or even proportional with respect to income, but regressive. This article summarizes recent changes to income, sales, and property taxes that have made Maine’s state and local tax system more regressive

    The Potential for Abiotic Methane in Arctic Gas Hydrates

    Get PDF
    Most methane enclosed in gas hydrates is biotic in origin, formed by microbial degradation of sedimentary organic matter. Increasingly, there is evidence that substantial gas hydrate may also be sourced from thermogenic decomposition of organic matter and subsequent migration of this gas into the gas hydrate stability zone. In addition, there is a third potential source of methane that does not involve organic matter at all— abiotic methane, which can be generated by magmatic processes or gaswater- rock reactions in the crust and upper mantle
    • …
    corecore